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ABSTRACT

This paper is concerned with the interpretation of
unsteady, variable - density flow fields. The topology of
the flow is determined by finding critical points and
identifying the character of local solution trajectories.
The time evolution of the flow is studied by following
the paths of the critical points in the three-dimensional
space of invariants of the local deformation tensor. The
methodology can be applied to any smooth vector field
and its associated gradient tensor including the vorticity
and pressure gradient fields. This approach provides a
framework for describing the geometry of complex flow
patterns.  Concisely summarizing tha: geometry in the
space of invariants of the local gradient tensor may be
& useful way of gaining insight into time - dependent
processes described by large volumes of data.
Applications to the description of a flickering diffusion
flame and a compressible wake will be discussed.

1. INTRODUCTION

Advances in computation and measurcment
techniques have led t a rapid increase in our ability w
geoerate vast quantities of unsweady flow Jeld data. A
wide variety of flows are being computed or measwed
experimentally using an almost equally wide variety of
methods. Direct numerical simulation at moderate
Reynolds number is now an established tool for the
study of turbulent flows even in the presence of
complicating conditions such as heat release,
compressibility, buoyancy and the like. However,
despite this success, & true understanding of turbulence
stll eludes us and there is a growing realization that,
to an important degree, the future usefullness of
simulation for problem solving and for gaining new
understanding will rest on our ability to synthesize
complex flow information. The key to this will be to
find systematic methods for reducing three-dimensional
flow paterns to basic elements in order o identify,
sommarize and relate significant features of the data.

Topological methods are useful in the description
of fields. They focus attention on the problem of
comnecting vortex structures together to complete the
flow field and they provide a description of complex
flow patterns in terms of a limited set of clementary
patterns which can occur near critical points in the
field. Recentdy Chong, Perry and Cantwell (1988) have
carried out a classification cf the various types of
clementary three-dimensional flow parterns which can
occur near critical points in compressible and
incompressible flow. If the vector field of interest is
linearized about the the critical point x¢ = (x¢, Xy X%y)
= 60

R VIR (m
and the local majectories of the vector field are given
by the solution x(s; x°). If the flow field is unstcady
the pattern at an instant is considered and s is a
parameter along the instantaneous field lines. If the
flow psttern is steady and Aij is the velocity
deformation tensor, du; / dx;, then s is equivalent to the
ime in the motion of a fluid particle along a
streamline.

Let the deformation tensor be broken up inio a
symmetric and an antisymmetric part, aui/axj ’sij*
Rjj , where Sij= (auﬁxji-aujlaxl)ﬂ and Ry = &y laxj -
duj / 0x;)/2 are the strtin and rotation tensors
respectively. The eigenvalues of Ajj satisfy the
characteristic equation

ARl + QLR =0 @
where the matrix invariunts are:
P={a;; + an + a33) = -race [A)=-S; (3)

Q_I a1 212 . a1 A 0 an

82 & 8 8 832 &y
P ocdat]]ud(p-sysy-m_] @

and

a1 22 ap

1 an

13 432 an

=(1/3) (-P + 3 PQ - race(AY) )

R=- = - det[A

= (173) (-P* + 3 PQ - SiSaSui - 3RRaSw) ()

It can be shown that, in the P-Q-R space of
matrix invariants, there exists a surface which divides
real solutions from complex solutions. This surface is
given by

2TR?+ 4P’ - 18PQR+(4 Q3 -P2Q)=0  (6)

The topology of a given vector field is identified
as follows.
i) Locate the critical points of the field and evaluate the
nine partial derivatives of the field variables at esch
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ii) Evaluate P, Q and R at the critical points. The
local topology is determined by the position of a critical
point with respect tc the surface (6). A detailed
discussion of ‘the propertes of this surface is given in
Chiong, Peiry and Cantwell (i988) along with a guide
to the various possible elementary flow patterns which
can occur in different domains.

iii) The time evolution of the flow topology is followed
by repeating steps (i) and (ii) at each instant and
plotting the cesulting path of each critical point in (P,
Q. R) space. Bifurcations in the flow topology occur
when critical points first appear, merge. split or change
type as their trajectory crocses the surface (6) or other
boundasies between topologically distinct domains.

Tins scheme has several attractive features for
corcisely summarizing the behavior of flow fields. In
an incompressible flow the first invariant of the velocity
grudient tensor is zero and therefore the trajectories of
the criiical points are reswricted by continuity to lie in
the plane cf the second and third invariants. In this
case the complete topological history of a three-
dimensional flow can be represented in a plane. The
vorticity vector field is intecresting because the first
invariant of the vorticity gradient tensor,
dw; /Ax; , is zero for both compressible and
incomoressible flow. The pressure gradient vector field
is interesting becauss the gradient tensor of this field,
ap/ axi‘axj , always has real eigenvalues with
orthogonal eigenvectors.

In the present paper, data for a flickering
diffusion flame and a compressible wake are interpreted
using this approach. These cfforts are at a very early
stage and we are stll at the point of trying to ask the
right questions.

2. UNSTEADY DIFFUSION FLAME

Lewis, Cantwell, Vandsburger and Bowman
(1988) used particle tracking to messure instantaneous
velocity fields in an unsteady methane - air diffusion
flame subject to u classical, periodic, flickering
instability. These measurements were used to picture
the topology of a flame undergoing breakup. Figure 1
shows a typical processed image of the vector field
data measured in these experiments. More recently
complete vector fields were measured by Lewis (1989)
over the first 25 diameters above the fuel jet exit.
There exists in this flow a relatively unambiguous
means of choosing the most appropriate frame of
reference.  As the flickering instability develops a
confined region of high strain mate develops on the axis
approximately six jet dismeters downstream of the fuel
Jet exit. Although there are significant buoyancy-induced
accelerations inside the flame the high swain rate
disturbance moves vertically upward at a nearly constant
speed and is used to define an appropriate frame of
reference. The velocity field in Figure 1 is plotted with
respect 10 an observer moving with this disturbance.

Figure 1 also indicates various salient features of
the flame including the image produced by soot
radiation which appears as a heavy black envelope
surrounding the fuel-rich core of the flame. Several
critical points are also indicated; a lower saddle, which
in this figure is indicated at the top near the flame tip,
an outer ring vortex beneath the flame surrounding the
flame neck and an upper saddle located at the base of
the flame. The reason for the apparent ambiguity in
naming the saddles has to do with the periodicity of
the flame and the fact that they are really part of the
same flow structure which tends to be located berween
adjacent rolled-up fiames.

This i5 made clear in Figure 2 which depicts a
sequence of frames showing the complete evolution of
flame topology during the flickering cycle over the first
25 diameters of the flow. The dashed line in this
figure corresponds to the soot envelope seen in Figure
1. The necking down and eventual pinching off of this
envelope leads to the breakup of the flame. This figure
indicates that the flickering instability in a diffusion
flame involves a distinct birth, growth and decay cycle
of a cellular vortex-ring-like structure. This structure
originates at a point approximately six diameters
downstrearn of the jet exit and is associated with the
high smain rate disturbance described earlier. As the
vortex ring develops the soot envelope is distorted into
a tent-like shape with the flow near the upper saddle
tending to stretch the envelope outward, rolling it up
into the center, while the movement of air toward the
axis near the lower saddle wends to push the envelope
inward eventually causing the flame to pinch off. The
relatively rapid growth of the vortex and concomitant
increase in its apparant mass act to offset the
scceleration by buoysncy helping to explain the
observed constant convection velocity of the vortex
ring.

The flicker instability is driven by, but not soley
dependent upon, buoyancy and some understanding of
the basic mechanism can be gained by examining
velocity data very near the jet exit. The release of heat
in a cylindrical sheet surrounding the jet exit creates a
hoilow plume which rises under the action of
buoyancy. The acceleration of fluid on the jet axis
begins slowly but becomes stronger as heat is
conducted to the jet centerline. As the flow accelerates
the flame sheet contracts, further increasing the rate of
heat transfer to the centerline, further accelerating the
flow, further increasing the heat transfer and so forth.
Also contributing to the scceleration and pinch-off on
the centerline is the diffusion of momentum radially
inward “‘uc to the opposite signed vorticity contained in
the flame gencrated plume. This opposite signed
vorticity is produced within a cocple of diameters of
the jet exit and persists for a considerable distance
downstream. As the flame sheet pinches off this
vorticity accumulates near the upper sc44%: giving it a
peculiar re-entrant appearance imparting a heart shape o
the overall structure as seen in Figures 1 and 2. The
vortex structure retains this heart-shape untl the
vorticity at the upper saddle is convected outward and
downward into the center terminating the flickering
cycle.

Figure 3 depicts the evolution of the flow in P,
Q. R coordinates where the velocity derivatives have,
been normalized by the jet exit velocity and jet
diameter. To simplify the discussion each invariant is
plotted on a scparate set of axes. The first invariant,
P, is the negative of the flow divergence and is related
to heating and cooling of fluid in the neighborhood of
the critical point. A feeling for the relative magnitude
of P can be gained by examining Figure 3(d) which
indicates the magnitude of the strain and vorticity at the
critical points. The normalized vorticity at the center
attains a maximum value of 5 compared to normalized
values of P at the saddles which lie between -2 and 2.
In other words typical levels of flow divergence are
comparable to typical levels of vorticity and can be
expected to play a significant role in the flow
dynamics. The flow divergence at the center remains
very close to zero over most of the cycle. The birth
of the vortex structure occurs at Phase 2 with the first
appeanance of critical points in this frame of reference.
The valw of P at the lower saddle wonds to remain
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negatve indicating a slowly decreasing density probably |

related to heating at the saddlc .hrough conduction. The
upper saddle seems to begin with relatively rapid
cooling possibly associated with the convection along
the axis of relatively cooler core fluid as the soot
envelope is pushed outward

The second invariant, Q, is .hown in Figure 3
(b). The centers (really a line surrounding the jet axis)
show a slowly increasing value of Q, indicating more
intense rotadon, untl flame pinch-off occurs after which
Q falls almest to zero. An examinaticn of the time
evolution of - and R (Figure *c¢) clearly reveals the
birth, growth and decay cycle referred to earlier. Flame
pinch-off is a very well defined event with all of the
invariants of the critical points tending rapidly to zero
after the event. Another feature which is revealed is
that the upper and lower saddle points have a very
different character. Figure 3 (d) indicates that the
magnitude of the axial extensive strain at e lower
saddle is considerably smaller than the magnitude of the
axial compressive strain at the upper saddle. This
difference beccmes even more apparent when R, which
is proportional 1> the cube of the strain rates, is plotted
in Figure 3 (r). This figure depicts a rapid build-up
and then fall-off of R at the upper saddle while R at
the center an' lower saddle remains closc to zero
throughout the cycle. Although we have just begun to
study the topology of flames in (P, Q, R) space these
initia! results suggest that the invariants of the
deformation tensor can serve as a sensitive indicator of
flame dynamics.

3. COMPRESSIBLE PLANE WAKE

Efforis are presently under way to determine the
topology of the velocity, vorticity and pressure gradient
vector fields in the compressible wake computations of
Chen, Cantwell and Maasour (1989)l and Chen,
Mansour and Cantwell (1989). This work is at a very
carly stage and at the writing of this paper the results
are bnth preliminary and quite incomplete. Very
recently we have found that in the early stages of
instability the 2-D wake topology is similar to the
topology of two mixing layers separated by an
alleyway. As the disturbances grow a bifurcation
occurs wherein the saddles on opposite sides of the
wake become connected. These results are discussed in

Chen, Cantwell and Mansour (1989)2 presented at this
conference. In the present paper I would like to make
some remarks about the 3-D vorticity and pressure
gradient fields. Al the results will pertain to one case
in which the initial free-stream Mach number is one
and velocity defect Mach number is 0.692. The wake
Reynolds number is 300.

Figure 4 shows instantaneous streamlines in the
wake a short time after the onset of the motion. The
lines are p-duced by integrating particle tracks with the
velocity field frozen. The initial positions of the
particles are chosen to lie in two planes: one at the
midpoint and one at the side boundary of the domain.

The initial field consists of a 3-D oblique wave
superimposed on a 2-D wave chosen to coincide with
the most amplified mode. In the absence of the 3-D
disturbance the centers are joined in the spanwise
direction by a degenerate line. Adding the 3-D
disturbance creates a connection in the spanwise
direction and the centers become stretching and
contracting foci with flow from the centerline moving
outward toward the houndary.

Figure 5 shows two views of vortex lines in the
wake at a late stage in the three-dimensional
development (dimensionless time t=64). The vortcity,
which was 1nitially only shightly perturbed from being
aligned in the spanwise dirccdon, has formed a series
of highly flattened vortex loopsor discs inclined to the
direction of flow. One of the observatons of this
work has been that all of the flow structure observed
in incompressible wakes is also seen in the compressible
case but delayed in tme due to the lower amplification
rates. In the case presented here, the critical points

~ first appoar when the wake defect Mach number is well

below one. Although there are significant temperarure
and density variutions throughout the field, density
changes due to heat conduction occur relatively slowly.
As a consequence P is nearly zero and the critical
points can be depicted in the Q-R plane.

Each of the voriex discs contains a center and a
saddle in the vorticity vector field and the computational
domain contains six such structures. From symmetry
considerations the critical points associated with each
vortex disc should have the same vaiues of P, Q, and
R. However because the data is numerically determined
on a grid there is some uncertainty in determining
derivatives at the critical points and as a result there is
some scatter in the location of the critical points in this
plane. Moreover the vorticity ve.... field tends to be
highly degenerate in the sense that there are extended
regions where the vorticity and its first derivatives are
close to zero. As the Reynolds number is increased,
the more extensive these fiat regions become. Figure 6
shows the values of Q and R at t =64 determined at
the six centers and at one saddle. Symbols for wo of
the centers overlay each other and the symbol for one
of the centers is very close to the origin reflecting the
casically degenerate navwe of the field The remaining
saddles are located in regions where the vorticity is
very flat and if they exist at all they canmot be
distinguished by our present method of data
interpolation. The center point occurs near the apparant
center of the voriex disc and the saddle lies outside of
the disc and between adjacent vortex loops where the
direction of the vorticity vector reverses to align with
the neighbering structure in the streamwise direction.
The interesting thing is that, for the critical points
which can be distinguished, the value of R is very
nearly zero implying that the center is indeed a center
and not a focus and that the saddle is locally two-
dimensional. How can these features be so two-
dimensional when the basic flow is so obviously three-
dimensional ? Chong, Perry and Cantwell (1989)
discuss the possible existence of skewed two
dimensional vector fields and we see such an example
here in the wake. With a bit of effort a SLINKY toy
can be strutched, bent and skewed into a configuration
whick resembles the vortex lines in Figure S.

Two examples of the pressure gradient vector field
at t =59 are shown in Figure 7. The pressure gradient
field 1n two planes aligned with the flow direction is
shown. In Figure 7 (a) the plane is chosen to pass
through the maximum in streamwise vorticity ; ie.
through the side of the vortex disc. In Figure 7 (b) the
plane s chosen to pass through the minimum in
sueamwise vorticity; ie. diametrically through the center
of the disc. The pressure gradient patterns in both
cases arc similar except for the strength which is
somewhat larger in case (s). As expected the critical
points all have real ecigenvalues and, if they exist,
orthogonal eigenvectors. To the extent that viscous




transport of momentum can be neglected the pressurc
gradient vectors can be. thought of as the negative of
the acceleration field. In this variable the flow structure
is scen to consist of a sequznce of unstable nodes near
the vortex centers scparated by saddle points which lie
between the vortices. The problem of degeneracy also
arises in connection with this field which goes to zero
in the free stream. However within the body of the
flow critical points are easy to distinguish and the
pressure gradient field appears to be a good indicator
of imponant features of the flow field.

4. CONCLUBING REMARKS

Each of the fields coasidered has advantzges and
disadvantages for flow interpretation and a great deal of
work bevond these fledgling efforts needs to be done
in order to determine the variable or set of variables
which will work best in a given situatdon. The
topology of the velocity vector field is relatively easy to
distinguish but depends on the frame of reference. The
topology of the vorticity vector field is independent of
the observer and can he displayed in th¢ Q-R plane.
But at high Reynolds number the vorticity field tends
to be degenerate and full of holes requiring a higher
order approach which is likely to be difficult 10 apply
in pracnce. In this instance wraditional critical point
concepts los: their usefullness and need to be replaced
by general raathematical methods for dealing with higher
order field topology. The pressure gradient field is
independen: of the motion of a non-accelerating
observer ard has easily identifiable critical points with
orthogonal eigenvectors. Usually the pressure gradient
decays outside the vortical region lcading to a
degeneracy problem in identifying critical points near the
edges of the flow. However the degeneracy of the
pressure, which decays algebraically, is not as serious
as that of the vorticity which decays exponentally and,
in practice, it should be possible to model the external
pressure. field using analytic functions.
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Figure 1- Measured velocity vectors and soot envelope
in a flickering methane-air diffusion flame.
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